Zobacz posty bez odpowiedzi | Zobacz aktywne tematy RSSKanał RSS

Odpowiedz  [ 1 post ] 
 On the Configuration Space of a Scalar Field in 1+1D 
Autor Wiadomość

Rejestracja: 10 Maj 2017, 08:23
Posty: 260
Post On the Configuration Space of a Scalar Field in 1+1D
Consider a real scalar field Φ(x)Φ(x) in one spatial dimension which asymptotically goes to its vacuum values Φ+Φ+ or Φ−Φ−. Given the requirement of finiteness of energy, we deduce that no continuous transformation can change a field configuration to one with different asymptotic values. Thus the field values at ±∞±∞ classify all possible field configurations into (four) homotopy sectors.

Now consider the configuration space. I am not so sure about this part, but to visualize this space, what I do is imagine an infinite-dimensional vector space with an orthogonal (or orthonormal, if necessary) basis (like Euclidean space, but infinite-dimensional), where every basis vector is labeled ΦxΦx and Φx=Φ(x)Φx=Φ(x), with xx varying continuously from -∞∞ to +∞∞ .

Now, every point in this space corresponds to a field configuration and every path in this space is made up of series of such points.

My questions are:

What is wrong with the image I have of the configuration space of a scalar field?
If my image is acceptable:

What do we mean by a path in this space, in more physical terms?
If I can draw a path from one vacuum to the other in this space, how is that possible, given the homotopy argument mentioned above? Does this imply that configuration space is somehow larger than merely the space of all configurations?

Thank You!!!

I didn't find the right solution from the Internet.
https://physics.stackexchange.com/quest ... eld-in-11d
Air Filtration System Video

19 Sie 2017, 13:26
Wyświetl posty z poprzednich:  Sortuj według  
Odpowiedz   [ 1 post ] 

Nie możesz zakładać nowych tematów na tym forum
Nie możesz odpowiadać w tematach na tym forum
Nie możesz edytować swoich postów na tym forum
Nie możesz usuwać swoich postów na tym forum
Nie możesz dodawać załączników na tym forum

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group.
Designed by STSoftware for PTF.